ROLE OF METALS IN SNAKE VENOMS FOR HEMORRHAGIC, ESTERASE AND PROTEOLYTIC ACTIVITIES*

CHRISTIAN FRIEDERICH and ANTHONY T. Tu†

Department of Biochemistry, Colorado State University, Fort Collins Colo. 80521 U.S.A

(Received 1 August 1970; accepted 9 October 1970)

Abstract—Atomic absorption analysis was used in the determination of metal distribution of seventeen snake venoms. Ca, Mg, Zn, Na and K, were found in all venoms tested. Biological and enzymatic activities were followed as the metal ions of the venoms were removed with EDTA. Lethality and esterase activity remained unchanged by the removal of metals, while hemorrhagic and proteolytic activity showed a marked decrease. Hemorrhagic activity could be partly restored by the addition of divalent Mg or Zn.

Local tissue damage such as hemorrhage and necrosis is a typical symptom due to Crotalidae and Viperdae envenomation. It has been reported that some chelating agents reduce the hemorrhagic and lethal effects of snake venoms.¹⁻³ Goucher and Flower⁴ detected loss of hemorrhage and local necrosis upon addition of EDTA to the venom of eastern cottonmouth, *Agkistrodon piscivorus piscivorus*. The findings of these researchers strongly suggests that certain metals are involved in venom hemorrhagic activity. At present, snakebite treatment depends exclusively on the injection of horse serum antivenin. In many cases, local tissue damage is not prevented by the use of antivenin unless it is administered immediately. Therefore, the chelating agents which inactive hemorrhagic action of snake venoms, may be useful for chemical treatment.

Devi⁵ reported that iron content of Indian cobra (*Naja naja*) and Russell's viper (*Vipera Russellii*) venoms was 0.028 and 0.016 mg% respectively. Zinc was also found in Indian Cobra venom. Moav *et al.*⁶ reported that copper and zinc were found in high concentration in *Vipera Palestina* venom after simple dialysis. However, no systematic analysis of metal content in snake venom or its relation to biological activity has been reported.

In order to clarify the role of metals in venom hemorrhagic activity we have analyzed for the metals contained in various snake venoms. After the preliminary analysis, the venoms were treated with EDTA, and the metals of these venoms were again determined. Lethality, hemorrhage and several enzyme activities of the venoms were tested before and after EDTA treatment. To further establish the role of metal ion, Ca, Mg or Zn was added to the EDTA-treated venom and its effect on the hemorrhagic activity was tested.

^{*} This investigation was supported by United States Public Health Service Grants 5 RO1 GM 15591-03 and 5RO1 FD-00014-03.

[†] NIH Career Development Awardee (5K04 GM 41768-02).

MATERIALS AND METHODS

Materials

The lyophilized venoms were obtained from Miami Serpentarium Laboratories and Ross Allen's Reptile Institute. Standard metal solutions were purchased from Beckman Instrument Co., p-toluene-sulfonyl-L-arginine methyl ester (TAME), N-benzoyl-L-arginine ethyl ester (BAEE), and casein were purchased from Calbiochem, EDTA disodium salt and tris from Fisher Scientific Products. All inorganic compounds were of analytical reagent quality. The water used in making all solutions was triply distilled by a Corning A6-lb glass distillation apparatus.

Venoms

The venoms used in these experiments were obtained in a lyophilized form. Crotalus atrox (Western Diamond Back Rattlesnake), Crotalis basciliscus (Mexican West Coast Rattlesnake), Crotalus durissus totonacus (Totonacan Rattlesnake), Crotalus horridus horridus (Timber Rattlesnake), Crotalus horridus atricaudatus (Canebrake Rattlesnake), Sistrurus milarius barbouri (Dusky Pigmy Rattlesnake), Bitis arietan (Puff Adder), and Bitis gabonica (Gaboon Viper) were purchased from Miami Serpentarium Laboratories in Miami, Florida. Crotalus adamanteus (Eastern Diamond Back Rattlesnake), Crotalus durissus (Central American Rattlesnake), Crotalus durissus terrificus (South American Tropical Rattlesnake) and Crotalus viridis viridis (Praire Rattlesnake), were obtained from Ross Allen Reptile Institute in Silver Springs, Florida. Agkistrodon acutus (Hundred-pace Snake), and Naja naja atra (Formosan Cobra) were collected by Tu in 1966 and 1967. Naja naja (Indian Common Cobra) was sent by the Haffkine Institute in Bombay, India. Bungarus fasciatus (Banded Krait) and Vipera russelli siamensis (Thailand Russell Viper) were purchased from the Queen Saovabha Memorial Institute in Bangkok, Thailand.

Metal analysis

A 1% solution of each venom was prepared with a 1000 ppm lanthanum oxide solution;* the lanthanum solution is used to prevent the formation of Ca-phosphate complexes which are not dissociated in the Acetylene-air flame. No absorption occurs for the Ca atoms while they are bound in these molecular compounds. The venom samples were then analyzed for metal content on a Beckman Atomic Absorption modular system (model 1301 Atomic Absorption unit with Laminer flow burner-acetylene and air, DB-G Spectrophotometer, and 6 in. chart recorder). Polyethelene containers were used when possible as they contained no detectable levels of metal contaminants. The specific metal concentrations were determined from previously prepared standard curves. A second set of 1% venom solutions was dialyzed against glass distilled water for 48 hr using a dialyzer Model 390 from Instrumentation Specialities Co. The dialysis tubing had been previously treated with EDTA to remove metal ions. Aliquots of the venom solutions were removed at 12 hr intervals; lyopholized and dissolved in the 1000 ppm lanthanum solution. The samples were aspirated into the atomic absorption unit to establish the levels of the remaining metals. The

^{* 1000} ppm La_2O_3 solution—1·18 g La_2O_3 in 2 ml conc. HCl with the volume brought to 1 l. with distilled water.

Table 1. Metal contents of snake venoms before and after dialysis analyzed by atomic absorption (μg metal/g venom)

Venom (Origin)	Hr*	Ca	Zn	Mg	Na	K	Cu	Mn	Fe	Other metals†
Crotalidae				***************************************						
A. acutus (Formosa)	0 48	3000 2668	1200 522	450 409	36977 12780	1070 965	175 42	0	0	0
C. atrox (U.S.A.)	0 48	4196 3780	1394 1093	701 344	57300 24600	410 320	0	0	0	0
C. adamanteus (U.S.A.)	0 48	1610 1604	773 452	107 97	42300 8400	750 750	0	0	0	0
C. basciliscus (Mexico)	0 48	1989 1990	1400 990	376 310	16800 10200	670 638	0	0	0	0
C. durissus (Central Americ	0 a) 48	3003 2968	1203 700	1470 775	36700 12800	13500 3970	0	0	0	0
C. durissus terrificus	0 48	2390 2280	1856 1380	342 204	45700 1780	1660 1440	0	0	0	0
(South America) C. durissus totonacus) 0 48	1633 1590	840 680	117 100	28800 1500	590 550	0	0	0	0
(Mexico) C. horridus horridus	0 48	4930 3629	980 800	973 406	53000 21900	420 400	0	0	0	0
(U.S.A.) C. horridus atricaudatus	0 48	150 97	680 657	129 91	49900 10010	350 240	0	0	0	0
(U.S.A.) C. viridis viridis	0 48	4560 2730	1847 1050	240 209	26400 1200	710 600	0	0	0	0
(U.S.A.) S. milarius barbouri	0 48	4000 2750	2010 1525	446 297	39 50 0 1550	2540 2159	200 90	0	0	0
(U.S.A.) Viperdae										
B. arietans (South Africa)	0 48	2306 1200	1000 846	700 274	41500 500	500 439	0	500 52	0	0
B. gabonica (South Africa)	0 48	2900 1080	690 680	636 277	364 00 750	220 220	0	0	0	0
V. russelli siamensis (Thailand)	0 48	1987 1306	1800 809	976 30 6	34100 654	760 310	0	0	0	0
Elapidae										
N. <i>naja</i> (India)	0 48	1000 105	1600 360	840 650	60200 24800	150 100	0	200 521	0	0
N. naja atra (Formosa)	0 48	1000 138	380 170	650 317	43600 25250	300 109	0	13 3	0	0
B. fasciatus (Thailand)	0 48	1620 137	196 139	810 500	26500 24700	391 110	0	0	0	0

^{*} Length of time that crude venoms were dialyzed against distilled water before analysis.

[†] Mo, Bi, Se, Pt, Pd, Ag and Au.

dialyzed venoms were subjected to 0·1 M EDTA for 6 hr, and again dialyzed against distilled water for 36 hr to remove EDTA. The venoms were lyophilized and examined by atomic absorption as before.

Lethal, hemorrhagic and enzymatic activities

The toxicity of the crude venom and of the EDTA-treated venom was statistically compared using a modified method of Litchfield and Wilcoxon.⁷ The venom samples were dissolved in distilled water and 0·10 ml of the venom solutions were injected intravenously into the tail vein of 20 g Swiss white mice. Ten dose levels of venom were used to determine the toxicity with ten mice being used in each dose. After 24 hr, the number of surviving mice was determined and the lethality (LD₅₀) estimated.

Crude venom, EDTA-treated venom, EDTA treated with Mg, EDTA treated with Zn, and EDTA-treated venom with Ca ions were used in the following analyses:

Hemorrhagic activity was estimated using the method of Tu et al.^{8,9} Swiss white mice weighing 20 g were subcutaneously injected with various amounts of venom $(2-20 \mu g)$ in 0·1 ml saline solution. A saline solution $(0\cdot1 \text{ ml})$ was injected as a control. The mice were sacrificed after 6 hr; the skins were removed and immediately photographed. The degree of hemorrhage was determined with an Evans Electroselenium Ltd (EEL) "Scanner", by scanning the negative to measure the degree of hemorrhage. The area of the resulting curve was measured with a Gelman Model 30231 Planimeter, Proteolytic activity was followed using a modified method of Kunitz¹⁰ with casein as

Table 2. Metal contents of snake venoms after EDTA treatment and effect on lethality

		al con		Lethality (LD ₅₀ μg/g)		
	,	enom	1)	before	after	
Venoms	Ca	Mg	Zn	EDTA	EDTA	
Crotalidae						
A. acutus	0	0	8	0.38	0.38	
C. atrox	0	14	86	3.56	3.57	
C. adamanteus	0	0	100	2.36	2.41	
C. basiliscus	0	0	51			
C. durissus	0	0	3			
C. durissus terrificus	4	0	120	0.35	0.41	
C. durissus totonacus	6	3	18			
C. horridus horridus	0	25	200	2.57	2.47	
C. horridus atricaudatus	0	10	17			
S. milarius barbouri	15	10	250	12.59	12.47	
C. viridis viridis	0	0	200	1.01	0.99	
Viperidae						
V. russelli siamensis	0	0	3	2.11	2.01	
B. arietans	17	13	46	2.00	1.90	
B. gabonica	0	0	33	4.95	5.2	
Elapidae						
N. naja	0	200	86	0.13	0.11	
N. naja atra	0	100	80	0.29	0-30	
B. fasciatus	0	210	100			

the substrate. One ml of a 1% solution of casein buffered at pH 7·0 by 0·1 M phosphate was added to 0·5 ml venom solution. After the mixture was incubated for 30 min at 37°, 2·0 ml of 5% trichloracetic acid was added to stop the reaction. On standing at room temperature for 30 min, the change in absorbance of the supernate was read at $280 \text{ m}\mu$ on a Beckman DB-G spectrophotometer.

Esterase activities were obtained by measuring the rates of hydrolysis of TAME and BAEE. The method used was that of Toom et al.¹¹

RESULTS

Metal content

In order to establish overall metal distribution in snake venoms, the venoms of eleven Crotalidae, three Viperdae, and three Elapidae were analyzed for 15 metals by

TABLE 3. RESTORATION OF HEMORRHAGE ACTIVITY BY METAL IONS*

	Venom		EDTA-treated venom							
	before EDTA	Addition of metals								
Venoms	treatment (mm²)	No metals	Mg (mm²)	Zn (mm²)	Ca (mm²)					
Crotalidae										
A. acutus	11.65	0	3.09 (26.5%)†	0.35 (3%)	0					
C. atrox	12.41	0	4.84 (39.0%)	0.62 (5%)	0					
C. adamanteus	11.69	0	2.47 (21.2%)	0.12 (1%)	0					
C. basiliscus	12.11	0	1.65 (13.6%)	0.66 (6%)	0					
C. durissus	13.06	0	1.96 (15.0%)	0.42 (4%)	0					
C. durissus terrificus	9.42	0	0.97 (10.3%)	0.19 (2%)	0					
C. durissus totonacus	10-25	0	2.05 (20.0%)	0.31 (3%)	0					
C. horridus horridus	13.48	0	3.11 (23.1%)	0.54 (4%)	0					
C. horridus atricaudatus	11.95	0	2.28 (19.1%)	0.24 (2%)	0					
C. viridis viridis	12.34	0	2·46 (19·9%)	0.75 (6.1%)	0					
S. milarius barbouri	8.05	0	1.77	0.32 (4%)	0					
Viperdidae										
V. russelli saimensis	2.16	0	0.54 (25%)	0.11 (5%)	0					
B. arietans	6.41	0	1.54 (24%)	0.46 (7.1%)	0					
B. gabonica	4.35	Ŏ	1.00 (23%)	0.26 (6%)	ŏ					
Elapidae										
N. naja	0	0	0 0	0 0	0					
N. naja atra	0	Ö	0 0	0 0	ŏ					
B. fisciatus	0	Ō	0 0	0 0	Õ					

^{*} For hemorrhagic test, the skins were removed after venom injection and photographed. Hemorrhagic activity was expressed as the areas under the curve scanned by EEL Scanner on the negative.

[†] The numbers in parentheses indicated the per cent hemorrhagic activity recovered.

atomic absorption. Metal content of venoms were analyzed by dialyzing venom against water for 12, 24 and 48 hr. Dialysis of 48 hr gave a constant level for each metal. None of the venoms contained detectable amounts of Mo, Bi, Se, Pt, Pd, Ag or Au, while the remaining metals (Ca, Zn, Mg, Na, K, Cu, Mn and Fe) were found in some if not all of the venoms (Table 1). High concentrations of Na and K were found in all venoms. The three most noticeable divalent metals found in the venoms were Ca, Zn and Mg.

Relation to lethality and hemorrhagic activity

The atomic absorption analysis of the venoms after treatment with EDTA is given in Table 2. Sodium and potassium were not analyzed as EDTA was added to the venoms as the Na-salt. Ca and Mg concentrations were almost completely removed; Zn remained at about 10 per cent of the original value. The only difference between the families of snakes was that the Mg content remained at a somewhat higher level (30 per cent) in the Elapidae family.

TABLE 4. ESTERASE AND PROTEOLYTIC ENZYME ACTIVITIES OF SNAKE VENOMS BEFORE AND AFTER EDTA TREATMENT

Venoms						Proteolytic activity* EDTA-treated venoms				
	Esterase TAME		activity BAEE		No	No	Addition of			
	Before	After	Before	After	EDTA	metals	Ca	Zn	Mg	
Crotalidae									,	
A. acutus	2200	2350	774	710	21.0	0.20	1.67	3.67	2.25	
C. atrox	2200	2120	4030	3168	10.0	0.33	1.15	2.50	3.07	
C. adamanteus	7550	7000	3110	3110	10.0	0.20	1.20	2.11	2.47	
C. basiliscus	2120	2040	32650	32610	25.0	0.35	1.71	3.74	3.12	
C. durissus	4940	4870	3610	3550	20.0	0.25	1.19	2.67	2.00	
C. durissus	2130	2220	4840	4840	18.0	0.50	1.67	2.97	2.90	
terrificus										
C. durissus	5960	5830	21380	20185	15.0	0.40	1.56	3.00	3.33	
totonacus										
C. horridus	3330	3331	7100	7060	16· 0	0.20	2.00	2.25	2.50	
horridus										
C. horridus	2178	2130	4930	4920	20.0	0.77	1.31	2.75	3.00	
atricaudatus										
C. viridis	2790	3039	30370	30375	17.0	0.33	2.00	3.67	3.00	
viridis										
S, milarius	2140	2099	3429	3449	12.0	0.20	1.17	1.25	1.69	
barbouri										
Viperidae										
V. russelli	710	675	1675	1669	5.0	0.0	0.50	1.00	1.50	
siamensis	, 10	372	.010	1307	5.0	- "		_ 00		
B. arietans	909	921	3690	3550	10.0	0.75	0.33	1.50	1.75	
B. gabonica	1770	1620	5685	5580	12.0	0.33	0.50	1.50	1.50	

^{*} Proteolytic and esterase activity unit is defined as (absorbance change/min/mg venom) imes 1000.

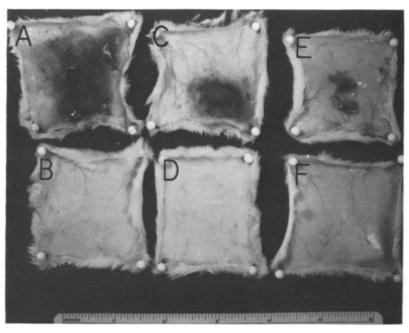


Fig. 1. Inactivation and restoration of venom hemorrhagic activity in *Crotalus atrox*. Hemorrhage caused in mice by: (A) 28 μ g venom (B) 28 μ g EDTA-treated venom (C) 70 μ g EDTA-treated venom with 25 μ g Mg²+ (D) 70 μ g EDTA-treated venom with μ g Ca²+ (E) 70 μ g EDTA-treated venom with 5 μ g Zn²+ (F) Saline injection (0·1 ml).

Lethality (LD₅₀, μ g/g) was determined before and after the addition of EDTA to the venoms; no change was detected. Hemorrhagic activity was completely lost after treatment of the venoms with EDTA (Table 3). The extent of hemorrhage was determined by measuring the intensity and surface area of the damage. For possible regeneration of hemorrhagic activity, Ca, Mg or Zn ions were added to EDTA-treated venom and the amount of hemorrhage was determined as before. Table 3 gives the relative amounts of hemorrhage restored. Calcium ions did not restore hemorrhagic activity, while zinc ions restore a small degree of hemorrhagic activity and magnesium ions restored 10–39 per cent of the original hemorrhagic activity. Figure 1 shows an experiment in the determination of the hemorrhagic activity of *Crotalus atrox*.

Metal content and enzymatic activities

Enzymatic activity of protease was measured by following the rate of hydrolysis using casein as the substrate; TAME and BAEE were used for the determination of esterase activity (Table 4). No enzyme activity toward TAME or BAEE was noted in the Elapidae Family as previously reported.¹² Table 4 shows high proteolytic activity in the crude venoms whereas only a residual amount of this activity remains after EDTA treatment of the venom. The addition of metal ions (Ca, Mg and Zn) slightly restored the proteolytic activity. Ca ions, as before, were least able to restore proteolytic activity. Mg and Zn ions restored proteolytic activity without any apparent preference to the ions; whereas the restoration of the hemorrhagic activity shows a definite preference for Mg ions over Zn or Ca. The esterase activity of Crotalidae and Viperdae venoms was not affected by the removal of metals.

DISCUSSION

It has been reported that some metals were found in snake venoms but these studies usually involved only two to five snakes. The information obtained was highly incomplete and randomly selected, therefore, it is not clear whether particular metals found were universally present in all venoms or just in that particular venom.

This report is a systematic investigation of metal contents in venoms of various snakes from wide geographical origins. It was noted that three divalent metals (Ca, Zn, Mg) were found regardless of species. Cu, Fe and Mn were found in several venoms without apparent regard for species. Monovalent metals (K, Na) were found in high concentration in all venoms. It is assumed that they are present as charge balancing ions for the proteins and inorganic salts of the venoms. No direct correlation as to metal content to the species of snake, can be made from this information, however, Crotalidae venoms, i.e. rattlesnake and copperhead contain more Ca and Zn than Elapidae venoms ($1600-3700~\mu g$ Ca and $450-1500~\mu g$ Zn/g venom for Crotalidae, $1100-1300~\mu g$ Ca and $680-846~\mu g$ Zn for Viperdae, and $105-138~\mu g$ Ca and $139-770~\mu g$ Zn for Elapidae). Moav et al⁶ found Zn levels up to $500~\mu g/g$ in Viperia Palistenia; this value corresponds to the concentration of Zn that we found. They also found Cu at a concentration of $1000~\mu g/g$ venom in Viperia Palistenia; however, we could not establish Cu as being distributed in the venoms tested. Only Akistrodon acutus and S. milarius barbouri contained measurable amounts of Cu.

Of the biological parameters investigated, lethality was not affected by removal of metals, although a striking change in the degree of hemorrhagic activity was noted.

All of the hemorrhagic activity disappeared following the removal of divalent metals from snake venoms. Proteolytic activity was greatly reduced in the EDTA-treated venom while esterase activity was not affected.

Reconstitution experiments show (Table 3) that a 5- to 10-fold increase of the original concentration of Mg or Zn will restore a considerable amount of hemorrhagic activity. Proteolytic activity was also restored by addition of Mg or Zn but to a lesser degree.

An attempt to further clarify the role of metals in the biological activities of the venoms is obviously highly desirable. Isolations and characterizations of pure hemorrhagic toxins are underway at this time to accomplish these objectives.

REFERENCES

- 1. H. G. DEUTSCH and C. R. DINIZ, J. biol. Chem. 216, 17 (1955).
- Y. SAWAI, M. MAKINO, S. MIYASAKI, Y. KAWAMURA, S. MITSUHASHI and T. OKONOGI, *Japan. J. exp. Med.* 31, 267 (1967).
- 3. A. T. Tu, M. Homma, B. S. Hong and J. Terrill, J. clin. Pharmac. 10, 323 (1970).
- 4. C. GOUCHER and H. FLOWER, Toxicon 2, 139 (1964).
- A. Devi, in Venomous Animals and Their Venoms (Eds. W. Bucherl, E. Buckley and V. Deulo-FEU), p. 123, Academic Press, New York (1968).
- 6. B. MOAV, S. GITTER, Y. WELLWART and S. AMIEL, Radiochem. Methods Anal., Proc. Sym., Salzburg, Austria, 1964, 1, 205 (1964).
- 7. J. T. LITCHFIELD and F. J. WILCOXON, J. Pharmac. exp. Ther. 96, 99 (1949).
- 8. A. T. Tu, P. M. Toom and S. Ganthavorn, Biochem. Pharmac. 16, 2125 (1967).
- 9. A. T. Tu, M. Homma and B. S. Hong, Toxicon 6, 175 (1969).
- 10. M. KUNITZ, J. gen. Physiol. 30, 291 (1974).
- 11. P. M. TOOM, T. N. SOLIE and A. T. Tu, J. biol. Chem. 245, 2549 (1970).
- 12 A. T. Tu and R. B. Passey, Toxicon 4, 59 (1966).